Hilbert-Huang Transform-based Local Regions Descriptors
نویسندگان
چکیده
This paper presents a new interest local regions descriptors method based on Hilbert-Huang Transform. The neighborhood of the interest local region is decomposed adaptively into oscillatory components called intrinsic mode functions (IMFs). Then the Hilbert transform is applied to each component and get the phase and amplitude information. The proposed descriptors samples the phase angles information and amalgamates them into 10 overlap squares with 8-bin orientation histograms. The experiments show that the proposed descriptors are better than SIFT and other standard descriptors. Essentially, the Hilbert-Huang Transform based descriptors can belong to the class of phase-based descriptors. So it can provides a better way to overcome the illumination changes. Additionally, the Hilbert-Huang transform is a new tool for analyzing signals and the proposed descriptors is a new attempt to the Hilbert-Huang transform.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملدسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
متن کاملIllumination Invariant Face Recognition based on the New Phase Local Features
Hilbert-Huang transform (HHT) is a novel signal processing method which can efficiently handle nonstationary and nonlinear signals. It contains two key parts: Empirical Mode Decomposition (EMD) and Hilbert transform. EMD decomposes signals into a complete series of Intrinsic Mode Functions (IMFs), which capture the intrinsic frequency components of original signals. Hilbert transform is adopted...
متن کاملFast Empirical Mode Decompositions of Multivariate Data Based on Adaptive spline-Wavelets and a Generalization of the Hilbert-Huang-Transformation (HHT) to Arbitrary Space Dimensions
The Hilbert-Huang-Transform (HHT) has proven to be an appropriate multiscale analysis technique specifically for nonlinear and nonstationary time series on non-equidistant grids. It is empirically adapted to the data: first, an additive decomposition of the data (empirical mode decomposition, EMD) into certain multiscale components is computed, denoted as intrinsic mode functions. Second, to ea...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007